reciprocal buyings - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

reciprocal buyings - translation to ρωσικά

Reciprocal gamma; Reciprocal Gamma; Reciprocal Gamma function
  • Γ(''z'')}}}} in the [[complex plane]], plotted using [[domain coloring]].

reciprocal buyings      
покупки на двусторонней основе
dual basis         
BASIS ON A DUAL VECTOR SPACE CANONICALLY ASSOCIATED TO A BASIS ON THE ORIGINAL VECTOR SPACE
Reciprocal basis

математика

двойственный базис

reciprocal function         
  • Geometric intuition for the integral of 1/''x''. The three integrals from 1 to 2, from 2 to 4, and from 4 to 8 are all equal. Each region is the previous region halved vertically and doubled horizontally. Extending this, the integral from 1 to 2<sup>''k''</sup> is ''k'' times the integral from 1 to 2, just as ln 2<sup>''k''</sup> = ''k'' ln 2.
  • Graph of f(''x'') = ''x''<sup>''x''</sup> showing the minimum at (1/''e'', ''e''<sup>−1/''e''</sup>).
OF A NUMBER X, 1 DIVIDED BY X
Reciprocal function; Reciprocal (mathematics); 1/x; ⅟; Reciproc; Arithmetic inverse; X^-1; Reciprocal value

математика

обратная функция

Ορισμός

Reciprocal
The reciprocal of a number is the quotient obtained by dividing one by the number. Thus the reciprocal of 8 is 1/8. Applied to fractions the above operation is carried out by simply inverting the fraction. Thus the reciprocal of 3/4 is 4/3 or 1-1/3.

Βικιπαίδεια

Reciprocal gamma function

In mathematics, the reciprocal gamma function is the function

f ( z ) = 1 Γ ( z ) , {\displaystyle f(z)={\frac {1}{\Gamma (z)}},}

where Γ(z) denotes the gamma function. Since the gamma function is meromorphic and nonzero everywhere in the complex plane, its reciprocal is an entire function. As an entire function, it is of order 1 (meaning that log log |1/Γ(z)| grows no faster than log |z|), but of infinite type (meaning that log |1/Γ(z)| grows faster than any multiple of |z|, since its growth is approximately proportional to |z| log |z| in the left-half plane).

The reciprocal is sometimes used as a starting point for numerical computation of the gamma function, and a few software libraries provide it separately from the regular gamma function.

Karl Weierstrass called the reciprocal gamma function the "factorielle" and used it in his development of the Weierstrass factorization theorem.

Μετάφραση του &#39reciprocal buyings&#39 σε Ρωσικά